Peptidergic modulation of intrathalamic circuit activity in vitro: actions of cholecystokinin.
نویسندگان
چکیده
Cholecystokinin (CCK)-mediated actions on intrathalamic rhythmic activities were examined in an in vitro rat thalamic slice preparation. Single electrical stimuli in the thalamic reticular nucleus (nRt) evoked rhythmic activity (1-15 sec duration) in nRt and the adjacent ventrobasal nucleus (VB). Low CCK concentrations (20-50 nM) suppressed rhythmic oscillations in 43% of experiments but prolonged such activities in the remaining slices. Higher CCK concentrations (100-400 nM) had a predominantly antioscillatory effect. Suppression of oscillations was associated with a relatively large membrane depolarization of nRt neurons that changed their firing mode from phasic (burst) to tonic (single-spike) output. This decreased burst discharge of nRt neurons during CCK application reduced inhibitory drive onto VB neurons from multiple peaked inhibitory postsynaptic currents (IPSCs) to single peaked inhibitory events. We hypothesize that suppression of inhibitory drive onto VB neurons decreases their probability of burst output, which, together with a reduction of nRt burst output, dampens the oscillatory activity. Low CCK concentrations, which produced little or no depolarization of nRt neurons, did not alter the firing mode of the nRt neurons. However, the probability of burst output from nRt neurons in response to subthreshold stimuli was increased in low CCK concentrations, presumably leading to an increase in the number of nRt neurons participating in the rhythmic activity. Our findings suggest that the neuropeptide CCK, by altering the firing characteristics of nRt neurons, has powerful modulatory effects on intrathalamic rhythms; the ultimate action was dependent on CCK concentration and resting state of these cells.
منابع مشابه
Significant Changes in the Activity of L-Glutamic Acid Decarboxylase of Mouse Hypothalamus After Peripheral Injection of Cholecystokinin-8 and Caerulein
The activity of one of the metabolizing enzymes of - aminobutyric acid, (GABA), was determined in mouse hypothalamus after peripheral injections of cholecystokinin-8 (CCK-8) and caerulein (CLN). The activity of this rate-limiting enzyme, L-glutamic acid decarboxylase, (GAD), did not change thirty minutes after peripheral injections of either CCK-8 or CLN in doses of 50g/kg body weight. Howeve...
متن کاملSIGNIFICANT CHANGES IN THE ACTIVITY OF GABATRANSAMINASE AND SUCCINATE SEMIALDEHYDE DEHYDROGENASE OF MOUSE HYPOTHALAMUS FOLLOWING PERIPHERAL INJECTION OF CHOLECYSTOKININ-8 AND/OR CAERULEIN
The activities of 4-aminobutyric-2-oxoglutaric acid transaminase (GABA-T) and succinate semialdehyde dehydrogenase (SSADH) were determined in mouse hypothalamus after peripheral injections of cholecystokinin-8 (CCK-X)and/or caerulein (CLN). GABA transaminase activity was measured utilizing endogenous succinate semialdellyde dehydrogenase to convert the product of GAB A-T, succinate semiald...
متن کاملVasoactive intestinal peptide selectively depolarizes thalamic relay neurons and attenuates intrathalamic rhythmic activity.
The reciprocal synaptic relationship between the relay thalamus and surrounding thalamic reticular nucleus can lead to the generation of various rhythmic activities that are associated with different levels of behavioral states as well as certain pathophysiological conditions. Intrathalamic rhythmic activities may be attenuated by numerous neuromodulators that arise from a variety of brain stem...
متن کاملIntrathalamic rhythmicity studied in vitro: nominal T-current modulation causes robust antioscillatory effects.
Thalamocortical oscillations mediate both physiological and pathophysiological behaviors including sleep and generalized absence epilepsy (GA). Reciprocal intrathalamic circuitry and robust burst firing, dependent on underlying transient Ca current (IT) in thalamic neurons, support generation of such rhythms. In order to study the regulation of intrathalamic rhythm generation and the effects of...
متن کاملExtracellular peptidase activity tunes motor pattern modulation.
We are examining how extracellular peptidase activity sculpts the peptidergic actions of modulatory projection neurons on rhythmically active neuronal circuits, using the pyloric circuit in the stomatogastric ganglion (STG) of the crab Cancer borealis. Neurally released peptides can diffuse long distances to bind to their receptors. Hence, different neurons releasing the same neuropeptide into ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 17 1 شماره
صفحات -
تاریخ انتشار 1997